

Energy Efficient Lighting and Appliances (EELA) Project in East and Southern Africa

EELA for on-grid and off-grid productive use in EAC and SADC

Ground Rules

- Kindly <u>mute</u> your microphone during the presentations.
- Use the <u>"Raise Hand"</u> button in case you would like to ask a question or to add something in the conversation.
- Interpretation is available in French and Portuguese click the button and select.
- <u>Type</u> your comments and questions (English, French or Portuguese) in the group chat on the right of your screen.
- <u>Type FR</u> (for French) <u>or PT</u> (for Portuguese) next to your name to help us assign you to the correct breakout room.

Virtual and interactive!

Raise Hand

Agenda

No.	Webinar Item	Time (CAT/EAT)	Name	Organisation
1	Welcome remarks	10:00-10:10 / 11:00-11:10	Ms. Karin Reiss-Haimbala	UNIDO
2	Presentation on EELA Project market assessment and recommendations on PUE for SADC and EAC regions	10:10-10:40 / 11:10-11:40	Mr. James Wakaba, Director East Africa Ms. Monica Wambui, Senior Associate Clean Energy Access	CLASP
3	Presentation on global outlook on PUE appliances drawing on LEIA examples	10:40-10:50 / 11:40-11:50	Ms. Richa Goyal, Senior Insight Manager Ms. Sarah Hambly, Partnership and Communications Manager	Energy Saving Trust
4	Q&A	10:50-11:10 / 11:50-12:10		
5	Presentation on EELA Project activities on PUE	12:10-12:20 / 13:10-13:20	Mr. Readlay Makaliki, Lead Technical Expert, EELA Project	SACREEE
6	Facilitated discussion in breakout rooms on "Country experiences on EELA for PUE"	12:20-13:05 / 13:20-14:05	All Participants	
7	Closing remarks	13:05-13:15 / 14:05-14:15	Mr. Kuda Ndhlukula, Executive Director	SACREEE

Moderator: Denis Ariho, Lead Technical Expert, EELA Project, EACREEE

Welcoming remarks and objectives of the webinar

Ms. Karin Reiss Haimbala, UNIDO - EELA

EELA Project market assessment and recommendations on PUE for SADC and EAC regions Mr. James Wakaba, Director East Africa, CLASP Ms. Monica Wambui, Senior Associate, CLASP

Study Objective, Methodology and Tools

The Assignment

Objectives

- Characterize the market for energy efficient appliances and equipment for on-and off-grid productive use in the EAC and SADC regions
- Analyze the existing supply/value chains for on-and off-grid productive use
- Identify high impact interventions to support increased uptake of PU appliances and equipment

Activities

- Macro-level analysis of the regional market
- In-depth analysis of 6 selected countries;
- Identification and prioritization of most relevant PUE appliances
- Market sizing for priority appliances in focus countries

Consultative Country Selection

- Regional representation: 2 EAC, 4 SADC
- Geographical diversity coastal and landlocked countries
- Market nascence: development and electrification levels
- Status of EE and PUE policies
- Climatic conditions
- Energy situation, challenges in the sector
- Structure of the private sector
- Availability of data

Focus Countries

- EAC: Rwanda, Tanzania
- SADC: Malawi, Mozambique, Zambia, Zimbabwe

Appliance selection criteria

- Technological maturity
- Income generation potential
- Private sector stimulation
- Efficiency gains
- GHG emission reduction potential
- Inclusivity
- Scalability

2	1	0
Has All indicators/ very likely/	Has at least two	No indicators/ unlikely/ too
significant potential	indicators/Likely/ Some	niche/ not potential;
	potential	

Market Sizing Methodology

The Outputs

PUE Analyses in EAC and SADC

6 PUE Analyses on 6 Focus Countries PUE Market Sizing Report for Priority Appliances

Country Findings

Rwanda and Zimbabwe

Rwanda	Zimbabwe	
Demographics		
Geographically smaller compared to neighbors	Relatively large geographical size	
High population density: 525/sq.km	Low population density: 38/sq.km	
Key Economic Activities		
Agriculture, mining, manufacturing, indsutry, services, tourism		
On/Off Grid Status		
48.6% of the population accessing electricity via the main grid	Access to electricity stands at 40% i.e., 16% in rural and 78% in urban areas	
52% of the population will be reached through Off grid solutions	Population 6% best served by mini-grids, 13% by SHS and 44% live with 15km of grid, hence, grid extension**	

Rwanda and Zimbabwe

Rwanda	Zimbabwe	
Enablers		
Supportive existing overarching policy and regulatory frameworks		
mechanisms to mainstream gender across all sectors		
PU Highlights		
Existence of cooperatives present an opportunity to implement PU appliances ad equipment at a larger scale	The PUE market is extremely nascent	
High population density=access through mini grid= integration of PU technologies	Opportunity to leverage the infrastructure in the nascent but developing standalone solar and lighting market to expand into and scale PUE appliance	

Key PU Appliances

Market Sizing Sample Results: Zimbabwe and Rwanda

■ 2020 Zimbawe ■ 2033 Zimbabwe ■ 2020 Rwanda ■ 2033 Rwanda Market Size: Zimbabwe & Rwanda

Market Value in USD: Zimbabwe & Rwanda

■ 2020 Zim ■ 2033 Zim ■ 2020 Rwa ■ 2033 Rwa

Regional Findings

Relevant PUE and Value Chains

Motor driven Agro- processing e.g., Milling, Hulling Threshing (excluding drying):

Ideally at community level. Energy intensive energy used is proportional to the throughput achieved. Consider:

- sufficient catchment to utilize the service effectively (population density)
- efficient technologies to reduce operation cost
- If stand-alone solar PV is utilized, consider
 - Provision of ancillary services, to leverage idle energy.
 - Demand side management -to ensure max operation at peak sunhours
 - Value proposition highest in remote area

Relevant PUE and Value Chains

Water Pumping- community based or individually owned. Highly customizable depending on crop-specific water needs, climate, weather patterns and water source.

- Available water- thus water resource mapping is key.
- Poor water quality (high levels of sediments) is a major cause of pump performance decline.
- Pump add-ons such as water storage and irrigation systems are crucial.
- Quality, durability and thus warranties vary significantly across technologies and markets
- If Solar water pumps:
 - Pump efficiency is key to achieve maximum possible water yield
 - Portability may be desired and expected by end-users.

Relevant PUE and Value Chains

Cooling - Refrigeration, walk-in cold stores, milk chillers. variety of scales from individual. community to largescale warehousing solutions.

- Different technologies for different use cases- mapping in vital.
- Performance heavily affected by ambient temperature and relative humidity.
- Skilled and specialized labor required
- Choice of refrigerant is crucial and regulated
- If community-based solutions sufficient catchment areas needed
- Cannot be viewed in isolation as most value chains require a cold chain.
- If stand-alone solar PV is utilized, consider
 - Energy storage can be prohibitively expensive- Innovations like solar direct-drive (SDD) technology

Other Value Chains

Other Industries			
Industry	Opportunity	Incumbent Technology	Possible PUE Replacement
Textiles & Garm	Tailoring		Solar powered sewing machines
ents	Ironing	Use of Charcoal Iron box to iron fabric	Electric iron box
Artisanal produc	Metal working	Manual tools	Electric drills, Welding machines
tion	Wood working	Manual tools	Carpentry machines
	Cooking	Biomass	Popcorn machines, Electric pressure cookers
Services	Entertainment	N/A	TVs , Radios
Services	Cooling	N/A	Refrigerators & Freezers
	Barber shops and Saloons	Manual tools	Hair dryers and Hair clippers
E-commerce & e-services	Communications	N/A	Mobile Phones and computers, printers, scanners

There are several types of private sector supply chain actors involved in the delivery pf PUE, The most common type, emerging are **Producers/ OEMs** coupled with **vertically-integrated companies** or **distributors**.

KEY: Colored icons represent the activities that supply chain actors are commonly involved Dotted lines signify the activities that supply chain actors sometimes involve.

Challenges and Recommended Interventions

Legislative and Regulatory Barriers

- Insufficient regulatory frameworks
- Insufficient quality standards
- Adoption of quality, performance, and testing standards provides uniform technical requirements for appliances and equipment entering a market.
- Adoption of clear, efficient, and supportive policy and regulatory framework
- Gender inclusive policies

Capacity and awareness barriers

- Low consumer awareness and limited technical capacity
- Lack of up-to-date information/data
- To strengthen the PUE supply chain and market linkages between relevant actors in the PUE market

- Develop productive use awareness programs in order to build a strong belief amongst a wide range of stakeholders.
- Develop technical/implementation capacity of users and companies
- Enhance evidence-based decisionmaking
- Introduce PUE technology and training programs in higher education institutions or avail free courses on the same through media such as radio or the internet.
- Supply chain logistics enhancement

Financial Barriers

- Poor access to finance/financial constraints for enterprises/companies;
- Affordability/lack of consumer financing

- Reduce affordability barriers for end-users
- Increased focus on the private sector

THANK YOU

CONTACT

James Wakaba, CLASP. Email: <u>jwakaba@clasp.ngo</u> Monica Wambui Email: <u>mwambui@clasp.ngo</u>

Annexes: Tanzania, Malawi, Mozambique and Zambia Country Profiles

PU Market Barriers and Interventions

- Low customer awareness
- Low consumer affordability
- Financing constraints for companies
- Variable quality and performance of PU
- Underdeveloped supply and value chains
- Limited Market intelligence and reliable data on industrial PU

Zambia

Demographics

- Geographically large
- Low population density 23/sq.km

Economic Activities

- Copper mining, manufacture, tourism
- Agriculture ; large(more developed) and small scale; crop, livestock and aquaculture

On & Off Grid Status

- 74.8% of the urban population is served by the grid compared to 4% in rural areas.
- The grid mainly serves the mining sector
- Only 4.7% of population is served by off grid solutions.

Indicator	2020
Total(million) ¹	18.38
Agricultural Land (Sq km)(2019)	238,360
Population density (people per sq. km of land area)	23.3
Electrification Rate (access to electricity(%)(2019) ¹	43
Rural Population, % of Total ¹	55

Zambia

Enablers

- Few existing overarching policy and regulatory frameworks
- Few national PU initiatives and budding private sector
- Very nascent gender mainstreaming action

Key PU Appliances

- Solar water pumping
- Milling
- Cold Storage
- Egg Incubators

```
switch@ihpressing
```


PU Highlights

- The uptake of off grid solar solution is still nascent. Present concerted action to accelerate adoption can be paired with PU solutions
- Existing Rural Growth Centers(RGCs) mapped out to be served by minigrids can be used as a conduit to accelerate PU adoption

Tanzania

Demographics

- Geographically large
- Average population density 64/sq.km

Economic Activities

 agriculture(crop , Livestock and aquaculture), manufacturing, mining

On & Off Grid Status

- 73.2% of the urban population is served by the grid compared to 19% in rural areas. Focus on the grid areas is industrial PU
- The off-grid areas in Tanzania are mostly electrified through Solar home systems and mini-grids.

Indicator	2020
Total(million) ¹	59.74
Agricultural Land (Sq km)(2019)	396500
Population density (people per sq. km of land area)	64
Electrification Rate (access to electricity(%)(2019) ¹	37.7
Rural Population, % of Total ¹	65

Tanzania

Enablers

- Existing overarching policy and regulatory frameworks
- Multiple national PU initiatives
- Robust private sector

Key PU Appliances

- Solar water pumps
- Grain Mills
- Cold Storage
- Egg incubators
- Oil extraction

PU Highlights

- Access through mini grid = integration of PU technologies
- Existence of mini-grids and active private sector in the PU supply chains present an opportunity to implement PU appliances and equipment at a larger scale while meeting the goal of inclusivity, increased economic and social wellbeing

Mozambique

Demographics

- Geographically large
- sparsely populated with low population density 39.74/sq.km

Economic Activities

 agriculture(Crop, livestock and aquaculture) manufacturing, mining

On & Off Grid Status

- 72.5% of the urban population is served by the grid compared to 4.93% in rural areas.
- The grid is Unreliable with frequent outages
- The off-grid sector is still undeveloped

Indicator	2020
Total(million) ¹	31.26
Agricultural Land (Sq km)(2019)	414138
Population density (people per sq. km of land area)	39.74
Electrification Rate (access to electricity(%)(2019) ¹	29.6
Rural Population, % of Total ¹	62.93

Mozambique

Enablers

- Existing overarching policy and regulatory frameworks
- Few national PU initiatives and mature private sector
- Very nascent gender mainstreaming action

Key PU Appliances

- Solar water pumping
- Milling
- Cold Storage
- Dryers

PU Highlights

- The uptake of off grid solar solution is still nascent.
- Working with FUNAE to accelerate their existing efforts on mini-grids and other off-grid solutions can be used as a pathway to accelerate PU adoption.

Malawi

Demographics

- Relatively medium-scale in geographical size
- High population density i.e., 202 per sq. km

Economic activities

• agriculture, services, industry

On & Off-Grid Status

- 23% of the population has access to some form of electricity, of which 10% is grid and 13% an off-grid solar device
- Electricity regulatory environment has been largely focused on grid power, but now extending to include mini-grids and Stand-Alone System
- Estimated potential to meet basic energy needs for 37% of the population through off and mini –grid renewable energy systems

Indicator	2020
Total(million) ¹	19.13
Agricultural Land (Sq km)(2018)	56500
Population density (people per sq. km of land area)	202.91
Electrification Rate (access to electricity(%)(2019) ¹	11.2
Rural Population, % of Total ¹	82.57

Malawi

Enablers

- Existing overarching policy and regulatory frameworks
- Favorable business environment to attract investment
- There is evidence of efforts to mainstream gender at least in the energy sector

Key PU Appliances

- Solar water pumping
- Milling
- Egg incubators
- Cold Storage

PU Highlights

- Though nascent PUE, the country has an existing standalone solar and lighting market which provides a strong infrastructural foundational basis on which productive use appliances and equipment can be expanded into and scaled in the market.
- The high population density is favorable especially for small scale PUE centered businesses applications for which adequate demand for services/good is essential for profitability

PU Supply Chains and Actors remove this, add to

KEY: Colored icons represent the activities that supply chain actors are commonly involved Dotted lines signify the activities that supply chain actors sometimes involve.

Global outlook on PUE appliances drawing on LEIA examples

Ms. Richa Goyal, Senior Insight Manager, Energy Saving Trust Ms. Sarah Hambly, Partnership and Communications Manager, Energy Saving Trust

About

- We will speak about two countries' experience promoting productive use and household appliances, using examples from the Low Energy Inclusive Appliances programme (LEIA)
- LEIA is a research and innovation programme that aims to double the efficiency and halve the cost of electrical appliances suited for off- and weak-grid households, small businesses, and industrial consumers.
- It is funded by UK aid and the IKEA Foundation and is delivered through Efficiency for Access.

Solar Water Pump Experience in India

Key characteristics of the Indian pump market

- In India, 54.6% of population is engaged in agriculture and allied activities. Agriculture contributes to 17.4% of the country's Gross Value Added.
- Number of installations: ~30 million pumps (21M electric, 9M diesel, 0.25M solar)
- There is a stress on government led subsidy-based schemes

Key differences with the African market

- Land under irrigation: 52% in India and 4% in SSA
- High number of installations in India: India has about ~30 million pumps
- India is a subsidy led-market: India a subsidy driven 'push' market, mostly a business to government market. 60-95% subsidy provided by government.
- Pricing: In India, SWP pricing depends on benchmark cost or tender cost, market-based price exploration is less.
- PAYGO financing is less prominent in in India
- Local manufacturing and supply is strong in India and weak in Africa
- Pump sizes: In India, 5 7.5HP are more prominent and common
- Appropriate density of farmers
- Higher grid availability for enabling grid integration or feeder models involving FiTs

The water stress challenge

- In some places, water table is receding by 0.3 meters per annum. Over 18% of total electricity consumption and over 5% of total diesel consumption in India is used for irrigation purposes (Central Electricity Authority, 2015).
- Fuel powered ground water pumping is responsible for 8-12% of GHG emissions.
- National water supply is predicted to fall 50% below demand by 2030.
- 54% of India faces high water stress. In particular, the extremely high stress area blanketing Northwest India. The region is India's breadbasket.
- Water stress experience is heterogenous in nature.

Image from www.indiawatertool.in, WRI

Weblink

Government subsidy scheme details

- PM Kusum scheme launched in March 2019 is the government's flagship scheme for distribution of SWPs.
- Gol plans to add 15,750 MW through installations of 2.75M SWPs by 2022 under KUSUM scheme. Some of the leading states in terms of installations are Chhattisgarh, Rajasthan, and Andhra Pradesh. This scheme has 3 components:
 - Component A: 10,000 MW of Grid connected pumps (solar or any other RE) [Solar feeder model]
 - Component B: 17.5 lakh standalone solar pumps (up to 7.5HP)
 - Component C: Solarizing existing 10L grid connected pumps (up to 7.5HP)
- Solar Energy Data Management (SEDM) Platform, rolled out in 15 states across India

Image from mnre.gov

Examples of innovative business models and technological solutions being deployed in India

Grid connected models

- Watchdog transformers to curb free-riding
- Universal Solar Pump Controller (USPC) based systems to use surplus energy for food processing and cold
- Design appropriate FIT scheme to incentivize optimum use
- Gujurat Suryashakti Kisan Yojana (SKY) model in Gujarat
- Maharasthra's Solar Agricultural Feeder Policy
- Service based models: Asset lies with entrepreneur, or rural NGO, or farmer cooperative e.g. pilot by IWMI in Bihar, work on Irrigation As A Service by Claro Energy

Stand alone solar models

- Asset sharing models e.g. owned by Farmers cooperative or JLG
- Micro pumps or portable pumps where intersection with Africa is greater: <1HP pumps or Claro Energy type models where an e-vehicle with batteries will transport pump for hire
- IoT devices to monitor gw use

Off-grid fan market in Pakistan

Background context and end-users

- Pakistan regularly experiences high temperatures and humidity
- To keep cool, people need fans that provide high airflow and, as such, consume a lot of electricity
- Many people with low incomes struggle to afford available fans

Available appliances

- Locally manufactured fans deliver high airflow, but consume a lot of energy and cannot be supported by small SHSs.
- Imported solar-powered fans often have low airflow and limited battery time, so cannot keep many of their users in Pakistan cool

Limited commercial finance and investment/focus on lowincome markets

- Previously, the IFC attempted to support local solar-powered fan manufacturers to improve the efficiency of their fans
- Small and medium enterprises have limited commercial finance & investment to improve their fans; big brand fan companies tend not to focus on DC fans.

Inconsistent and unsupportive policy

- The market in Pakistan was largely unregulated and quality standards for solarpowered fans were lacking.
- Without standards, fan manufacturers produced metal fans that deliver high airflow but compromise on quality.

How the LEIA programme supported the off-grid fan market

OUR WORK ON

Outcomes – more efficient fans and reduced costs

- Local fan manufacturers improved the efficiency of fans by incorporating PM motors
- The average cost per service delivery has fallen
- Fan manufacturers are able to provide longer warranties to consumers

Energy efficiency value in m3/min/W

Impacts: increased sales and benefits for beneficiaries

Increased sales of highly efficient fans

- Tamoor Fans reported that, since the launch of their new BLDC pedestal fan in early 2020, fan sales have surpassed 5,000 units within six seven months.
- The Sindh Solar Energy Project will finance 200,000 fan-based SHSs over three years in Pakistan.

Health and productivity benefits

- Increased energy access for households that purchase the fan with a PV system.
- Increased business productivity

LEIA resources

- Promoting High-Performing Off-Grid Appliances
- Promoting High-Performing Appliances: Advisory Services for Governments

THANK YOU

CONTACT

Richa Goyal, Energy Saving Trust Email: <u>richa.goyal@est.org.uk</u>

Sarah Hambly, Energy Saving Trust Email: <u>sarah.hambly@est.org.uk</u>

EELA Project activities on PUE

Mr. Readlay Makaliki, Lead Technical Expert, EELA Project, SACREEE

Presentation Outline

- 1. EELA Approach to Change
- 2. EELA Interventions
 - Private Sector Support
 - > Policy Framework
 - Capacity Building

Energy Efficient Lighting and Appliances in East and Southern Africa - EELA

EELA has a transformational approach towards the development of vibrant markets where suppliers are delivering high-quality services and products for energy efficient lighting and appliances to increase awareness for households, businesses and public facilities across East and Southern Africa. EELA stimulates local manufacturing and private sector investments.

The EELA approach to change

\bigcirc	\$
-::	l

Market incentives for the private sector to deliver efficient and high quality energy services

Minimum Energy Performance Standards (MEPS) for appliances which are harmonized in the region

Capacity building on policy and regulatory framework development, appliances testing and regulatory enforcement

Awareness raising on the benefits of adopting efficient technologies across all stakeholders

A coordinated regional effort through RECS and regional sustainable energy centres

Implemented by UNIDO with financial support from the government of Sweden

Policy Framework

- Developed Regional MEPS for Lighting
 - Adopted by SADCSTAN as regional harmonised text with reference SADC HT109:2021
 - ✓ Soon to be voted as adopted standard in EAC region
- Collaboration with UNEP's U4E on cosponsoring development of MEPS for cooling appliances (Refrigerators & Air Conditioners)
 - Draft MEPS for refrigerators and Air conditioners shared with Member States for comments
 - ✓ Expected to be finalised end 2022

SADC Regional TC Meeting

EAC Regional TC Meeting

Regional Compliance Framework

Goal

Effectively implement regional EE policy measures and protect EAC and SADC markets from non-compliant products.

Capacity Building of key Stakeholders

- Lack of ability by MS to carry out market surveillance
- Test equipment key to market surveillance and standards enforcement
- EELA Project to capacitate 2 Regional Labs
- Portable Lighting Test Equipment procured for 21 Member States
- For use in Market surveillance and conformity checks

MEASURE IN 30 SECONDS

- Lumen
- Peak candela value
- Color temperature, CCT
- Spectrum, CRI, TM30, CQS
- Beam angle
- · Detailed light distribution
- · Power and power factor
- Lumen per Watt

Measure any type of Light Source

Measures a variety of parameters No expert Knowledge required to use the equipment

Private Sector Support

Technical Assistance and Co-Financing Facility Summary

	Window 1	Window 2	Window 3
Applicants	Energy users	Energy service	Manufacturers
		providers	
	Technical assistance	Non- repayable grant to	Non- repayable grant
	to design an Energy	cover upfront costs for	to support
Support offered	Efficiency project	equipment	technology upgrade
	applying an energy		
	service business	Max. 200,000 EUR	Max. 100,000 EUR
	model		
	Demonstrated	Signed contract with a	Demonstrated need
Required own	commitment to	client.	for upgrade of
contribution	implement the		manufacturing
	project		
		At least 25%	At least 25%
		demonstrated co-	demonstrated co-
		financing	financing

Open Call for Expression of Interest launched April to December 2021

Capacity Building of key Stakeholders - EELA Online Training

- e-Learning platform developed
- Advantages include wider reach, more content and can be done at participants convenience
- Course open to all stakeholders with guided training for change agents

EELA Activities Supporting PUE Activities

- Through the EOI for the Private Sector Co-financing Facility we have identified projects demonstrating business models supporting PUE under the following initiatives
 - ✓ Street lighting to support off-grid markets
 - ✓ Commercial offshore fishing activities
 - ✓ Solar water pumping for agriculture
 - ✓ Cold storage for agricultural output
 - ✓ Efficient grain milling equipment
- Conducted a Webinar in May 2021 on Pathways to Repair of global off grid appliances – essentially focusing on life extension for PUE
- The Market Assessment on PUE will inform development of module 4 on the E-learning Platform and the recommendations will help develop future activities of the EELA project

Country Experiences on PUE Moderated by: Mr. Denis Ariho, EACREEE – EELA

Breakout session

Breakout Session

- Participants will be assigned in 1 of 4 breakout rooms
- **30 minutes discussion**
- French and Portuguese interpretation available in Group 1 only!

• **Questions:**

- 1. How does the EELA focus on productive use speak to the needs of your country?
- 2. What are your countries' key activities with respect to promoting the uptake of EELA for PUE?
- 3. What are the barriers and what support is required to implement EELA for productive use, on-grid, and off-grid in your countries (incl. capacity building needs)?
- 4. Which appliances do you think is there an opportunity to improve energy efficiency in?

Closing Remarks

Mr. Kuda Ndhlukula, UNIDO - EELA

THANK YOU

CONTACT UNIDO Ms. Karin Reiss, email: <u>K.REISS@unido.org</u> Ms. Evita Moawad, email: <u>E.MOAWAD@unido.org</u>

EACREEE Mr. Fungai Matura, email: <u>info@eacreee.org</u> Mr. Denis Ariho, email: <u>info@eacreee.org</u>

SACREEE Mr. Readlay Makaliki, email: <u>energy@sacreee.org</u>

For further information, visit: www.eacreee.org | www.sacreee.org | www.unido.org

